Bi-telecentric lens for 2/3" detectors, magnification $0.093 x$, C mount

KEY ADVANTAGES

Perfect measurement accuracy
TCDP PLUS telecentric lenses produce two images at different magnifications to cover an extended range of your product dimensions with the same accuracy.
Smart cost reduction
Solving two vision tasks with one lens involves less components and lowers the vision system cost.
Detailed test report with measured optical parameters.

TCDP PLUS series are dual magnification telecentric lenses supporting two cameras to measure objects with different magnifications.

Mechanical specifications

Mount		C
Phase adjustment 8		Yes
Length 9	$(\mathrm{~mm})$	337.5
H^{10}	$(\mathrm{~mm})$	145.2
Front diameter	(mm)	143.0
Mass	(g)	2821

${ }^{4}$ Maximum angle between chief rays and optical axis on the object side. Typical (average production) values and maximum (guaranteed) values are listed.
${ }^{5}$ Percent deviation of the real image compared to an ideal, undistorted image. Typical (average production) values and maximum (guaranteed) values are listed.
${ }^{6}$ At the borders of the field depth the image can be still used for measurement but, to get a very sharp image, only half of the nominal field depth should be considered. Pixel size used for calculation is $3.45 \mu \mathrm{~m}$.
${ }^{7}$ Object side, calculated with the Rayleigh criterion with $\lambda=520 \mathrm{~nm}$
${ }^{8}$ Indicates the availability of an integrated camera phase adjustment feature.
${ }^{9}$ Measured from the front end of the mechanics to the camera flange.
${ }^{10}$ Right angled ocular length, measured from the optical axis of the frontal lens to the camera flange

COMPATIBLE PRODUCTS

Full list of compatible products available here.

A wide selection of innovative machine vision components.

[^0]
FIELD OF VIEW STRAIGHT OCULAR

Sensors 1	$(\mathrm{~mm} \times \mathrm{mm})$
$1 / 2^{\prime \prime}(6.40 \times 4.80 \mathrm{~mm} \times \mathrm{mm})$	68.82×51.61
$2 / 3^{\prime \prime}(8.50 \times 7.09 \mathrm{~mm} \times \mathrm{mm})$	91.40×76.24
$1^{\prime \prime}(14.19 \times 7.51 \mathrm{~mm} \times \mathrm{mm})$	-
$4 / 3^{\prime \prime}(18.93 \times 10.61 \mathrm{~mm} \times \mathrm{mm})$	-

FIELD OF VIEW RIGHT ANGLED OCULAR

Sensors 1	$(\mathrm{~mm} \times \mathrm{mm})$
$1 / 2^{\prime \prime}(6.40 \times 4.80 \mathrm{~mm} \times \mathrm{mm})$	34.41×25.81
$2 / 3^{\prime \prime}(8.50 \times 7.09 \mathrm{~mm} \times \mathrm{mm})$	45.70×38.12
$1^{\prime \prime}(14.19 \times 7.51 \mathrm{~mm} \times \mathrm{mm})$	76.29×40.38
$4 / 3^{\prime \prime}(18.93 \times 10.61 \mathrm{~mm} \times \mathrm{mm})$	101.77×57.04

TCDP PLUS LENS DIMENSIONS

$\mathbf{L}=$ length of the lens from the front end to its straight ocular (low magnification path).
$\mathbf{H 1}=$ distance from the end of the right angled ocular (high magnification path) to the middle of the lens (axis 1).
D = lens diameter

Straight ocular (low magnification path)

Dimensions of a TCDP PLUS lens.

STRAIGHT OCULAR PERFORMANCE

Modulation Transfer Function (MTF) vs. Image Resolution, wavelength range $486 \mathrm{~nm}-656 \mathrm{~nm}$

Relative Illumination

Relative illumination vs. Object Field Height, from the optical axis to the corner of the field of view

Distortion

Object Field Height vs. Distortion, from the optical axis to the corner of the field of view

Modulation Transfer Function (MTF) @ 20 Ip/mm vs. Working Distance Shift from the best focus Working Distance, wavelength range $486 \mathrm{~nm}-656 \mathrm{~nm}$

[^1]
RIGHT ANGLED OCULAR OCULAR PERFORMANCE

Modulation Transfer Function (MTF) vs. Image Resolution, wavelength range $486 \mathrm{~nm}-656 \mathrm{~nm}$

Relative Illumination

Relative illumination vs. Object Field Height, from the optical axis to the corner of the field of view

Distortion

Object Field Height vs. Distortion, from the optical axis to the corner of the field of view

Depth of Field

Modulation Transfer Function (MTF) @ $20 \mathrm{lp} / \mathrm{mm}$ vs. Working Distance Shift from the best focus Working Distance, wavelength range $486 \mathrm{~nm}-656 \mathrm{~nm}$

[^2]
[^0]: All product specifications and data are subject to change without notice to improve reliability, functionality, design or other. Photos and pictures are for illustration purposes only. Data are reported by design, actual lens performance may vary due to manufacturing tolerances.

[^1]: All product specifications and data are subject to change without notice to improve reliability, functionality, design or other. Photos and pictures are for illustration purposes only.
 Data are reported by design, actual lens performance may vary due to manufacturing tolerances.

[^2]: All product specifications and data are subject to change without notice to improve reliability, functionality, design or other. Photos and pictures are for illustration purposes only. Data are reported by design, actual lens performance may vary due to manufacturing tolerances.

